Modelling and Characterization of Effective Thermal Conductivity of Single Hollow Glass Microsphere and Its Powder
نویسندگان
چکیده
Tiny hollow glass microsphere (HGM) can be applied for designing new light-weighted and thermal-insulated composites as high strength core, owing to its hollow structure. However, little work has been found for studying its own overall thermal conductivity independent of any matrix, which generally cannot be measured or evaluated directly. In this study, the overall thermal conductivity of HGM is investigated experimentally and numerically. The experimental investigation of thermal conductivity of HGM powder is performed by the transient plane source (TPS) technique to provide a reference to numerical results, which are obtained by a developed three-dimensional two-step hierarchical computational method. In the present method, three heterogeneous HGM stacking elements representing different distributions of HGMs in the powder are assumed. Each stacking element and its equivalent homogeneous solid counterpart are, respectively, embedded into a fictitious matrix material as fillers to form two equivalent composite systems at different levels, and then the overall thermal conductivity of each stacking element can be numerically determined through the equivalence of the two systems. The comparison of experimental and computational results indicates the present computational modeling can be used for effectively predicting the overall thermal conductivity of single HGM and its powder in a flexible way. Besides, it is necessary to note that the influence of thermal interfacial resistance cannot be removed from the experimental results in the TPS measurement.
منابع مشابه
Properties, Application and Synthesis Methods of boron nitride Powder: A Review
h-BN is a multipurpose ceramic material, with exceptional properties and a wide area of application in industry. It is structurally similar to graphite and it resists oxidation to higher temperatures than graphite. It is used in powder form as a mold release agent in metal casting, as a high temperature lubricant or even in cosmetics. hBN can be shaped by hot-pressing and is used as molds or cr...
متن کاملCHARACTERIZATION OF MICRO/NANO POROUS HOLLOW GLASS MICROSPHERES FABRICATED THROUGH VARIOUS CHEMICAL ETCHING PROCESSE FOR USE IN SMART COATINGS
Porous hollow glass microspheres have many uses, including encapsulation of active materials. In this paper a fast and facile method for fabricating porous hollow glass-microspheres was demonstrated by etching them using dilute hydrofluoric acid. Then, a highly reactive amine was infiltrated into the etched glass microspheres. Scanning electron microscopy was conducted for the hollow glass micr...
متن کاملDoes Addition of Silver Nanoparticles to Denture Base Resin Increase Its Thermal Conductivity?
Objective: Studies have demonstrates that physical properties of denture base affect patient satisfaction and acceptance. Thermal conductivity is among the most important properties of denture base influencing the sense of taste and gingival health. The conventionally used acrylic resin has a low coefficient of thermal conductivity. This study aimed to improve the thermal conductivity of acry...
متن کاملModeling of Effective Thermal Conductivity and Viscosity of Carbon Structured Nanofluid
This paper was aimed to address the modeling of effective thermal conductivity and viscosity of carbon structured nanofluids. Response surface methodology, D_optimal design (DOD) was employed to assess the main and interactive effects of temperature (T) and weight percentage (wt %) to model effective thermal conductivity and viscosity of multi wall and single wall carbon nanotube, CVD and RGO G...
متن کاملExperimental Investigation of the Alumina/Paraffin Thermal Conductivity Nanofluids with a New Correlated Equation on Effective Thermal Conductivity
Liquid paraffin as a coolant fluid can be applied in electronic devices as a result to its suitable capabilities such as electrical insulating, high heat capacity, chemical and thermal stability, and high boiling point. However, the poor thermal conductivity of paraffin has been confined its thermal cooling application. Addition of high conductor nanoparticles to paraffin can fix this drawback...
متن کامل